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Abstract
Large Language Models (LLMs) have demonstrated signif-

icant achievements across diverse modalities. In this paper, we
propose ATP-LLM, a framework that utilizes Audio and Text to
Prompt LLMs to perform mispronunciation detection and diag-
nosis (MDD) tasks in second language (L2) English. ATP-LLM
consists of an audio encoder and an LLM decoder. The au-
dio encoder converts L2 English speech into speech representa-
tions digestible for LLMs. These speech representations, along
with the corresponding canonical pronunciation, serve as audio
and text prompts that enable the LLM decoder to generate the
phones articulated by L2 English learners. Experiments show
that our proposed ATP-LLM achieves a new state-of-the-art
(SOTA) performance on the CU-CHLOE corpus with a Phone
Error Rate (PER) of 8.56% and an F1 of 82.02%, outperform-
ing the existing wav2vec2-CTC method whose PER and F1 are
8.98% and 80.93%, respectively.
Index Terms: L2 English, mispronunciation detection and di-
agnosis, prompting large language models

1. Introduction
Computer-Assisted Pronunciation Training (CAPT) offers peo-
ple an economical and accessible way to learn and practice new
languages. Central to CAPT is the mispronunciation detection
and diagnosis (MDD) system, which is designed to identify in-
correct pronunciations and provide targeted feedback. As de-
picted in Figure 1, a regular MDD pattern in second language
(L2) English involves several steps. Initially, the CAPT system
prompts learners to read a sentence. Then, the MDD system
processes the spoken utterance to recognize the phones artic-
ulated. Finally, the MDD system aligns the recognized phone
sequence and the canonical phone sequence to detect mispro-
nunciations and give pinpointed feedback.

Recent studies in MDD have predominantly concentrated
on two methodologies: (1) Pronunciation scoring, and (2)
Phone recognition in L2 speech. In the former, researchers
have utilized various confidence measures, such as Goodness
of Pronunciation (GOP) [1] and its derivatives [2,3], to evaluate
pronunciations and detect mispronunciations with low scores.
Some other researchers eschewed explicit pronunciation scor-
ing in favor of end-to-end mispronunciation detection. For in-
stance, Xu et al. [4] conceptualized MDD as a binary classifi-
cation problem, while Zhang et al. [5] built a Transformer [6]
based model to predict the error states of the phones. Nonethe-
less, pronunciation scoring is incapable of diagnosing the mis-
pronunciations.

To overcome this limitation, the second category of re-
search focuses on phone recognition in L2 speech. Extended
recognition networks (ERNs) [7, 8] have been constructed to

Figure 1: A regular MDD pattern in L2 English. The pronuncia-
tions are represented using the CMU Pronunciation Dictionary.

encompass both canonical pronunciations and potential mispro-
nunciations, offering extra decoding paths for phone recogni-
tion. However, ERNs are inherently limited in their capacity
to cover all mispronunciation variations. To mitigate this is-
sue, some researchers try to integrate high-quality free phone
recognizer into MDD systems. Leung et al. [9] designed a
CNN-RNN-CTC architecture, combining a Convolutional Neu-
ral Network (CNN), a Recurrent Neural Network (RNN), and
Connectionist Temporal Classification (CTC) loss [10], to fa-
cilitate phone recognition for MDD. Feng et al. [11] proposed a
sentence-dependent MDD system that connects a sentence en-
coder and a sequence labeling model via an attention mecha-
nism to incorporate the prompt sentence as extra textual infor-
mation for better phone recognition. Furthermore, [12, 13] pro-
posed to fine-tune the pretrained wav2vec 2.0 [14] with CTC
loss (denoted as wav2vec2-CTC method in this paper) to per-
form phone recognition and MDD tasks in L2 English speech.
The high correlation between phonemes and the learned audio
representations in wav2vec 2.0 has propelled wav2vec2-CTC
method to achieve state-of-the-art (SOTA) performance across
multiple datasets.

Recently, large language models (LLMs) have significantly
enhanced performance across a range of natural language pro-
cessing (NLP) tasks [15]. Despite these successes, the text-only
interaction with artificial intelligence (AI) systems remains a
limitation, falling short of the multimodal nature of human com-
munication, which also encompasses sounds, images, and other
sensory inputs. Therefore, plenty of researchers have been at-
tracted to investigate the potential of LLMs in integrating vari-
ous modalities, with the hope of getting overall performance en-
hancement. For instance, the Gemini model [16], as described
by the Gemini team, is designed as a multimodal LLM and
demonstrates enhanced performance across various modalities.
Driess et al. developed PaLM-E [17], a system that integrates
visual embeddings, neural 3D representations, and textual in-
structions within PaLM [18] to facilitate robotics tasks. Su et
al. proposed PandaGPT [19] which combines the multi-modal



Figure 2: Overall structure of the proposed ATP-LLM method.

encoder ImageBind [20] and the Vicuna [21] to perform various
tasks such as image description and question answering about
audios. Huang et al. [22] built AudioGPT which takes ChatGPT
as a coordinator to invoke different audio foundation models to
perform different tasks. Fathullah et al. [23] extended the ca-
pabilities of LLMs to automatic speech recognition (ASR). By
directly attaching an audio encoder to LLMs to digest the audio
modality, they achieved competitive results compared to tradi-
tional ASR methods.

The success of above works and the interactive nature of
language learning motivate us to explore the potential of LLMs
in MDD. We propose ATP-LLM, a framework that utilizes
speech representations and canonical pronunciations as Aduio
and Text Prompts to make LLMs hear and recognize phones ar-
ticulated by L2 English learners. With the alignment between
recognized phone sequence and canonical phone sequence, we
detect mispronunciations and give pinpointed feedback. Exten-
sive experiments show the effectiveness of our proposed ATP-
LLM framework. The contributions of this paper are threefold:
• This paper, to our best knowledge, is among the first ones that

explore the potential of LLMs in addressing the challenging
L2 English speech.

• This paper proposes ATP-LLM, a framework that utilizes au-
dio and text prompts to prompt LLMs to perform MDD tasks
and achieves a new SOTA performance on an L2 corpus.

• This paper investigates a variety of factors that influence the
MDD abilities of LLMs.

The structure of the paper is as follows: Section 2 describes
the proposed method. Section 3 presents the experiments and
evaluations. Conclusion is given in Section 4.

2. Methods
Figure 2 shows the overall structure of the proposed ATP-LLM
framework. ATP-LLM consists of an audio encoder, an LLM
decoder, and an adapter. Specifically, the audio encoder con-
verts raw L2 English speech into continuous speech representa-
tions digestible for LLMs. These speech representations, along
with the canonical phone sequence corresponding to the sen-
tence to pronounce, serve as audio and text prompts to make
the LLM decoder recognize the actual pronounced phones. The
recognized phone sequence is aligned with canonical phone se-
quence to achieve MDD. The adapter is responsible for effi-
ciently adapting the parameters of the LLM decoder.

2.1. Audio encoder

As depicted in Figure 3, the audio encoder comprises a CNN
feature extractor, a Transformer encoder, a prompt projection

Figure 3: The structure of the audio encoder.

module, a downsampling module, and a CTC projection mod-
ule. The CNN feature extractor consists of multiple convolu-
tional layers that transform raw speech waveform into a se-
quence of feature vectors. Subsequently, the Transformer en-
coder encodes these feature vectors to produce contextualized
speech representations, denoted as C, which serve as inputs to
two branches.

The first branch includes a prompt projection module fol-
lowed by a downsampling module. The prompt projection
module, comprising linear layers, transforms C into speech
representations that are dimensionally compatible with LLMs.
The downsampling module, comprising CNN layers, further
down samples these representations to generate the final audio
prompt. The second branch features a CTC projection module,
which utilizes linear layers to project C into phone probabilities
to compute an auxiliary CTC loss. The target of the CTC loss
is the transcription of the L2 English speech. During inference,
the second branch will be removed.

2.2. Large Language Model

In this paper, we adopt LLaMA 2 [24] as the LLM. LLaMA
2 is a versatile LLM with an auto-regressive Transformer ar-
chitecture trained on trillions of tokens. As depicted in Fig-
ure 2, the inputs to LLaMA 2 include an audio prompt, a text
prompt, and role information. The audio prompt is generated
by converting raw L2 English speech using the audio encoder
described in Section 2.1. The text prompt comprises the canon-
ical phone sequences corresponding to the sentences intended
for reading. Role information is used to simulate the interactive
process, distinguishing the question part and the answer part.
The output of LLaMA 2 is the pronunciations articulated in L2
English speech. We adopt Low-Rank Adaptation (LoRA) [25]
as the adapter to adapt LLaMA 2.

2.3. Training strategy

We jointly train the audio encoder and adapt the LLM utiliz-
ing both the language modeling loss LLM , and the CTC loss
LCTC . The overall loss function is formulated as:

L = LLM + λLCTC (1)

where λ is a hyperparameter that controls the weight of the CTC
loss. The language modeling loss LLM aims to guide LLMs to
correctly perform the next-token prediction task. We calculate



Table 1: Details of CU-CHLOE

Training Validation Test Total
Speakers 144 23 43 210

Hours 24 3.6 7 34.6

LLM with Equation (2).

LLM = −
n∑

i=1

log p(yi|y<i;θ) (2)

where y and θ represent the transcribed phone sequences and
the parameters of the entire model, respectively. The CTC loss
LCTC is calculated using Equation (3)

LCTC = − log p(y|x;θAE) (3)

Here, y remains consistent with its definition in Equation
(2), and x denotes the input L2 English speech. The term θAE

specifies the parameters of the CNN feature extractor, the Trans-
former encoder, and the CTC projection module in the audio
encoder (see Figure 3).

During training, the parameters of the CNN feature extrac-
tor and LLaMA 2 are always fixed.

3. Experiments
3.1. Datasets

The corpus we utilize for the experiments is CU-CHLOE [26].
CU-CHLOE comprises 34.6 hours of L2 English speech from
100 Cantonese speakers (50 male, 50 female) and 110 Man-
darin speakers (60 male, 50 female). Each speaker reads a set
of 86 sentences, which are designed to cover all native English
phonemes and can be categorized into four prompt types: (a)
The AESOP’s fable “The North Wind and the Sun”, (b) Con-
fusable words, (c) Minimal pairs, and (d) Phonemic sentences.
Well-trained linguists annotated the corpus with phone-level
transcriptions. The sampling rate of the speech is 16 kHz. Table
1 details the distribution of the corpus.

3.2. Experimental setups

The CNN feature extractor has 7 temporal convolutional lay-
ers that transform the raw speech signal into speech represen-
tations at a frequency of 49 Hz. These layers have 512 chan-
nels, strides of (5, 2, 2, 2, 2, 2, 2), and kernels of (10, 3, 3,
3, 3, 2, 2). The transformer encoder comprises 12 Transformer
blocks, each with a model dimension of 768, a feed-forward
dimension of 3072, and 8 attention heads. The weights of the
CNN feature extractor and the Transformer encoder are initial-
ized by fine-tuning the pre-trained wav2vec 2.0 on the dataset
detailed in Section 3.1 using CTC loss, following the recipe de-
tailed in [12].

The prompt projection module consists of one linear projec-
tion layer with an input dimension of 768 and an output dimen-
sion of 4096, matching the embedding dimension of LLaMA 2.
The downsampling operation is optional. When it is applied, the
downsampling module comprises one temporal convolutional
layer with both input and output channels set at 4096. We uti-
lizes kernels of (3, 10, 20) and corresponding strides of (2, 5,
10) to achieve varying downsampling rates. The CTC projec-
tion module has one linear projection layer with an input dimen-
sion of 768 and an output dimension of 32000, corresponding
to the size of the LLaMA 2 tokenizer.

We adopt the LLaMA2-7B model for all experiments. With
the rank set to 0, 16, and 32, the LoRA is applied to adapt the
parameters of the query, key, value, and output projection matri-
ces within the self-attention modules. Throughout the training
process, the parameters of the CNN feature extractor are frozen,
and those of the Transformer encoder are frozen for the initial
5000 updates. The hyperparameter λ in Equation (1) is set to 1.

We train the entire model using the Adam optimizer and
the WarmupDecayLR learning rate schedule [27] with a peak
learning rate of 1e-4 for 4 epochs on 2 A6000 GPUs with a
batch size of 2.

3.3. Experimental results

3.3.1. Evaluation metrics

With the alignment between recognized phone sequence and
transcribed phone sequence, we count the number of substitu-
tion (S), deletion (D), and insertion (I) errors. We then use Ac-
curacy ((N-S-D-I)/N), which is 1-PER, and Correct Rate (CR,
(N-S-D)/N) to evaluate the phone recognition in L2 English
speech. N is the length of the transcribed phone sequence.

We adopt metrics derived from True Acceptance (TA), True
Rejection (TR), False Rejection (FR), and False Acceptance
(FA) [28] to evaluate the MDD performance. With the align-
ment among canonical, transcribed, and recognized phone se-
quences, TA occurs when both the human-transcribed phone
and the recognized phone match the canonical pronunciation.
TR occurs when both the transcribed phone and the recognized
phone differ from the canonical pronunciation. FR occurs when
the transcribed phone matches the canonical pronunciation, but
the recognized phone does not. FA occurs when the recognized
phone matches the canonical pronunciation, but the transcribed
phone does not. We calculate False Rejection Rate (FRR,
FR/(TA+FR)), False Acceptance Rate (FAR, FA/(FA+TR)), De-
tection Accuracy (DETA, (TA+TR)/(TA+FR+FA+TR)), Preci-
sion (TR/(TR+FR)), Recall (TR/(TR+FA)), and F1 score.

Within the TR cases, Correct Diagnosis (CD) means that
the transcribed phone and the recognized phone are the same,
while Diagnosis Error (DE) means that they are different. The
derived Diagnosis Accuracy (DIAA) is CD/(CD+DE)

3.3.2. Main results

Table 2 shows the performance of different approaches. We
take the performance of the wav2vec2-CTC method [12] as the
baseline. The rank R determines the number of parameters that
we can adapt using LoRA within LLaMA 2. Concretely, we
have 0, 16.8, and 33.6 million of parameters to adapt with R
being 0, 16, and 32, respectively. Notably, the proposed ATP-
LLM model with an R = 32 configuration significantly outper-
forms the wav2vec2-CTC baseline across all evaluation met-
rics. For instance, our prompting method achieves an Accuracy
of 91.44%, an FRR of 4.31%, an FAR of 18.73%, an F1 of
82.02%, and a DIAA of 90.03%, outperforming the wav2vec2-
CTC method whose Accuracy, FRR, FAR, F1 and DIAA are
91.02%, 4.56%, 19.91%, 80.93%, and 89.35%, respectively.

Moreover, Table 2 shows that increasing R correlates with
the performance improvement in the majority of the metrics.
For example, the F1 increases from 81.59% at R = 0 to 81.87%
at R = 16, and further to 82.02% at R = 32. Though the system
performance in some metrics degrades with an increasing R, the
difference is minimal. For instance, the FRRs for ATP-LLM at
R = 16 and R = 32 are 4.29% and 4.31%, respectively, showing
a mere 0.02% absolute difference.



Table 2: Performance of different approaches. R is the rank in LoRA. Trainable parameters are the number of parameters that we can
adapt using LoRA within LLaMA 2. R = 0 means that we are not using LoRA and the parameters of LLaMA 2 are totally frozen.

Methods Trainable
parameters

Phone recognition (%) Mispronunciation detection and diagnosis (%)
Accuracy↑ CR↑ FRR↓ FAR↓ Precision↑ Recall↑ F1↑ DETA↑ DIAA↑

wav2vec2-CTC - 91.02 92.52 4.56 19.91 81.78 80.09 80.93 92.32 89.35
ATP-LLM R=0 0M 91.30 92.79 4.38 19.27 82.47 80.73 81.59 92.59 89.96
ATP-LLM R=16 16.8M 91.43 92.96 4.29 19.03 82.80 80.97 81.87 92.71 89.89
ATP-LLM R=32 33.6M 91.44 92.94 4.31 18.73 82.78 81.27 82.02 92.75 90.03

Table 3: Investigating the impact of the text prompt. AP-LLM means that we only use the audio prompt and don’t feed the canonical
phone sequence as text prompt into the LLaMA 2.

Methods Trainable
parameters

Phone recognition (%) Mispronunciation detection and diagnosis (%)
Accuracy↑ CR↑ FRR↓ FAR↓ Precision↑ Recall↑ F1↑ DETA↑ DIAA↑

wav2vec2-CTC [12] - 91.02 92.52 4.56 19.91 81.78 80.09 80.93 92.32 89.35
AP-LLM R=0 0M 91.22 92.74 4.55 19.37 81.87 80.63 81.25 92.44 89.65
AP-LLM R=16 16.8M 91.17 92.72 4.39 19.88 82.34 80.12 81.21 92.46 89.70
AP-LLM R=32 33.6M 91.25 92.80 4.43 19.43 82.28 80.57 81.42 92.52 89.92
ATP-LLM R=0 0M 91.30 92.79 4.38 19.27 82.47 80.73 81.59 92.59 89.96

Table 4: The impact of downsampling on system performance.
The number in parenthesis refers to the stride of the speech rep-
resentations serving as audio prompt.

Methods Accuracy↑ FRR↓ FAR↓ F1↑ DETA↑ DIAA↑
wav2vec2-CTC [12] 91.02 4.56 19.91 80.93 92.32 89.35
ATP-LLM (200ms) 89.77 4.26 27.15 76.87 91.09 87.65
ATP-LLM (100ms) 91.24 4.05 20.74 81.32 92.59 90.18
ATP-LLM (40ms) 91.40 4.01 19.71 81.93 92.80 89.95
ATP-LLM (20ms) 91.44 4.31 18.73 82.02 92.75 90.03

Remarkably, even with R = 0, which means that we re-
move LoRA and totally freeze the parameters of LLaMA 2,
our ATP-LLM model demonstrates superior performance to the
wav2vec2-CTC baseline across all metrics. For instance, the
Accuracy, F1 score, and DIAA are improved from 91.02%,
80.93%, and 89.35% to 91.30%, 81.59%, and 89.96%, respec-
tively. This result suggests that our prompting method can ef-
fectively and efficiently introduce LLM to MDD even without
compromising its original ability.

3.3.3. Ablation studies

We conduct extensive ablation studies to investigate the impact
of the text prompt and downsampling on system performance.

As mentioned above, the text prompt in this paper refers
to the canonical phone sequence corresponding to the sentence
to pronounce. As depicted in Table 3, the text prompt signif-
icantly enhances the system performance. Notably, even with
R = 0, ATP-LLM with text prompt outperforms all AP-LLMs
without text prompts in nearly all metrics. For instance, the
ATP-LLM (R = 0) achieves an Accuracy of 91.30%, an F1 of
81.59%, and a DIAA of 89.96%, marginally outperforming the
AP-LLM (R = 32) recipe whose Accuray, F1, and DIAA are
91.25%, 81.42% and 89.92%, respectively. The only metric
where AP-LLM (R = 32) excels is the CR, with a negligible ab-
solute difference of 0.01%. These results show that ATP-LLM
with a frozen LLaMA 2 generally outperforms AP-LLM with
an adapted LLaMA 2. Furthermore, all AP-LLMs outperforms
the wav2vec2-CTC baseline, demonstrating the LLM’s capabil-
ity to digest continuous speech representations and accurately
model L2 English speech.

Table 4 shows the impact of downsampling speech repre-
sentations that serve as audio prompt on system performance.

Generally, ATP-LLM with a small audio prompt stride outper-
forms systems with larger strides. The original stride of the au-
dio prompt output by the prompt projection module is 20ms. In-
creasing the stride from 20ms to 40ms results in a slight degra-
dation in some metrics, while simultaneously yielding a modest
improvement in other metrics. For instance, ATP-LLM (20ms)
achieves an Accuracy of 91.44%, an F1 of 82.02%, and a DIAA
of 90.03%, slightly outperforming the ATP-LLM (40ms) whose
Accuracy, F1, and DIAA are 91.40%, 81.93% and 89.95%, re-
spectively. While the FRR and DETA of ATP-LLM (20ms) are
4.31% and 92.75%, respectively, slightly inferior to the 4.01%
FRR and 92.80% DETA for the ATP-LLM (40ms). Though
increasing the stride to 200ms leads to a notable performance
degradation, resulting in inferior performance to the baseline,
the stride configuration at 100ms allows ATP-LLM to outper-
form the wav2vec2-CTC baseline across most metrics and re-
main competitive in others. The robustness of our ATP-LLM in
relatively large audio prompt strides makes it possible to com-
press the audio sequence and benefits the LLMs on operating
long audios.

4. Conclusions

In this paper, we propose ATP-LLM, a novel framework that
uses audio and text to prompt large language models (LLMs)
to perform mispronunciation detection and diagnosis (MDD)
tasks. Extensive experiments show the effectiveness of ATP-
LLM in modeling second language (L2) English. Notably,
ATP-LLM significantly outperforms the existing wav2vec2-
CTC method and achieves a new state-of-the-art (SOTA) perfor-
mance. Further investigations reveal the influence of Low-Rank
Adaptation (LoRA), text prompt, and downsampling on MDD
ablities of ATP-LLM. Remarkably, ATP-LLM maintains supe-
riority over the baseline across all metrics even with a totally
frozen LLM, suggesting that we can invoke the MDD ability
within LLMs without incurring additional costs. The inclusion
of the text prompt significantly enhances system performance.
While downsampling the audio prompt result in performance
degradation, the system remains competent, thereby enabling
the processing of long audios. In the future, we will enhance
the distillation of knowledge within LLMs and further improve
the system performance.
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